Odalys Campus

Quiénes Somos

Industrial,Designer,Has,Conversation,With,Senior,Engineer,While,Working,In
Más de 10 años de experiencia en ingeniería, aplicando sinergia de varias áreas de la técnica junto con nuevas tecnologías para garantizar el éxito de nuestros clientes.

Información General

Anda Gesion Global S.L. gestiona el activo Odalys Campus, residencia universitaria en Sevilla. Con el objeto de la mejora continua en eficiencia energética decide acometer un proyecto de generación de energía por medio de la instalación paneles fotovoltaicos en fachada. Transcurridos cierto tiempo, la instalación presenta deficiencias visuales que hacen suponer que dicha instalación no cumple los estándares de seguridad que demanda el Código Técnico de la Edificación (CTE).

El presente proyecto, Atreydes Ingeniería resuelve si la configuración instalada cumple con los criterios de seguridad, tanto para las personas como para la propia estructura, que marca el CTE por medio de la metodología de los elementos finitos (FEM).

Odalys Campus 1
Edificio Odalys Campus en Sevilla

Cálculos

Los paneles fotovoltaicos instalados tienen base de vidrio templado y, aunque existen diferentes tamaños sobre la fachada, el más grande tiene unas dimensiones de 1800x600x10 mm, dispuestos en posición vertical o en modo retrato.

Los paneles están instalados sobre guías verticales de aluminio de la aleación 6063-T5, fijados por sus lados cortos con dos sujeciones de aluminio de la misma aleación fijados a las guías por medio de tornillería autorroscante de acero.

Las guías se fijan a la pared por medio de anclajes en L de diferente anchura. Tornillería tirafondo asegura los anclajes en L y, por lo tanto, todo el conjunto a la pared del edificio.

Se expone, a continuación, imágenes del modelo de estudio.

La unidad de ingeniería se encuentra sometido a su propio peso y cargas de viento de succión y compresión, siendo las primeras más altas que las segundas, por lo que se considerarán solamente cargas de succión por ser más restrictivas que las de compresión.

Para el modelo FEM, se utilizarán elementos tipo shell para el vidrio templado y anclajes en L ya que el espesor de estos elementos se mantiene constante. Nos valdremos de elementos solid para las guías y los anclajes para el vidrio cuya forma es más tridimensional.

Cuando se habla de fallo en cualquier sistema mecánico o estructural puede significar que una parte se ha separado en dos o más piezas; se ha distorsionado permanentemente, arruinando de esta manera su geometría; se ha degradado su confiabilidad, o se ha comprometido su función, por cualquier razón.

El comportamiento del material estructural se clasifica de manera típica como dúctil o frágil. Normalmente, los materiales se clasifican como dúctiles cuando la deformación unitaria en el punto de rotura ( \epsilon_f ) es mayor que 0.05 y cuando tienen una resistencia a la fluencia identificable que a menudo es la misma en tracción que en compresión ( S_{yt} = S_{yt} = S_y ). Los materiales frágiles, \epsilon_f < 0.05, no presentan una resistencia a la fluencia identificable y típicamente se clasifican por resistencias últimas a la tracción ( S_{ut} ) y la compresión ( S_{uc} ).

Materiales ductiles

Se aplica la teoría de von Mises ( \sigma_{VM} ) para prevenir el fallo por fluencia del material. Esta teoría, considerada como la más apropiada para el fallo de materiales dúctiles, establece que no se producirá fallo por fluencia del material si la tensión equivalente de von Mises no supera el límite de fluencia del material, reducido con un coeficiente de seguridad ( \gamma ):

\sigma_{VM} \leq S_y' = \Large \frac{S_y}{\gamma}

Donde:

  • \sigma_{MV} : tensión de von Mises
  • \S_y : límite de fluencia del material
  • \gamma : coeficiente de reducción, por lo general de valor 1.05
  • \S_y' : límite de fluencia corregido

Por tanto, la validación de resultados mediante este criterio exige la cuantificación de los niveles de tensiones mediante la determinación de tensión equivalente de Von Mises, la cual resulta de la combinación de las tensiones principales, y se determina por la ecuación:

\sigma_{MV} = \sqrt{\Large \frac{(\sigma_1-\sigma_2)^2+(\sigma_2-\sigma_3)^2+(\sigma_3-\sigma_1)^2}{2}}

Para aplicar esta teoría se idealiza el comportamiento del material como elástico, es decir, cualquiera que sea el nivel de tensiones, el análisis se basará en la hipótesis de que el comportamiento tensión-deformación del material es lineal (proporcionalidad tensión-deformación):

\sigma = E  \epsilon;    \forall \epsilon < \epsilon_y

\epsilon_y = \Large \frac{\sigma_y}{E}

Con:

  • E : módulo elástico del material
  • \epsilon : deformación unitaria
  • \epsilon_y : deformación unitaria asociada a tensión límite de fluencia
  • \sigma : tensión
  • \sigma_y : tensión en el límite fluencia
Curva sigma-epsilon material ductil_2
Curva tensión-deformación para materiales dúctiles

Donde:

  • S_y : límite de fluencia definido por la deformación unitaria
  • S_u : límite de resistencia o última
  • S_f : límite de rotura
  • \epsilon_y : deformación unitaria en el límite de fluencia
  • \epsilon_u : deformación unitaria en el límite de resistencia
  • \epsilon_f : deformación unitaria en el límite de rotura
  • pl : límite de proporcionalidad
  • el : límite elástico

Usando las componentes xyz del esfuerzo tridimensional, el esfuerzo de von Mises puede escribirse como:

\sigma_{MV} = \sqrt{\Large \frac{(\sigma_x-\sigma_y)^2+(\sigma_y-\sigma_z)^2+(\sigma_z-\sigma_x)^2+6 (\tau_x^2+\tau_y^2+\tau_z^2)}{2}}

Materiales frágiles

La teoría del esfuerzo normal máximo (ENM) estipula que la falla ocurre cuando uno de los tres esfuerzos principales es igual o excede la resistencia. Si se colocan los esfuerzos principales de un estado general de esfuerzo en la forma ordenada \sigma_1 > \sigma_2 > \sigma_3 , esta teoría predice que la falla ocurre cuando \sigma_1 \geq S_{ut} \sigma_3 \leq -S_{uc} , donde S_{ut} y S_{uc} son resistencias a la tracción y a la compresión, respectivamente, dadas como cantidades positivas.

Curva sigma-epsilon material fragil_2
Curva tensión-deformación para materiales frágiles

Dado que en materiales frágiles el límite de fluencia ( S_y ) se encuentra muy cerca al de resistencia ( S_u ), se asumirá como criterio de validación, el siguiente:

\sigma_{MV} \leq \Large \frac {1}{\gamma} \normalsize  min (S_{ut}, S_{uc})

Donde:

  • S_{ut} : límite de rotura a tracción del material
  • S_{uc} : límite de rotura a compresión del material
  • S_u' : límite de rotura corregido

Se exponen, a continuación, las propiedades físicas de los materiales empleados en el presente proyecto para los componentes descritos:

  • Aluminio 6063-T5: Guías, sujeciones del vidrio, anclajes en L
  • Vidrio templado: paneles fotovoltaicos
Materiales

La unidad de ingeniería se encuentra sometido a su propio peso y a las cargas viento.

Establecidas las propiedades del material de cada elemento en la unidad de ingeniería, quedan establecidas las cargas de peso propio. Se determinan, a continuación, las cargas de viento más restrictivas que afectan al sistema según el Código Técnico de la Edificación (CTE).

Viento

La velocidad básica de viento ( v_b ) para este emplazamiento es de 26m/s.

Mapa viento
Figura D1 del DB-SE-AE (CTE). Valor básico de la velocidad de viento (Vb)

La presión ( w proporcionada por el viento según CTE, puede calcularse como:

w = q_{ref}  C_e(z)  C_p

Siendo:

q_{ref} = \Large \frac{1}{2}\normalsize \rho v_b^2

Con ρ como la densidad del viento en 1.25kg/m³.

En el cálculo del coeficiente de exposición ( C_e ) se ha considerado la altura del edificio (18 metros) en terreno tipo IV.

Coeficiente Ce
Coeficiente de exposición (Ce) del CTE

Con estos valores, el parámetro C_e es de 2.20.

Los coeficientes de presión exterior ( C_p ) se tomarán de la tabla D3 Parámetros verticales para edificios del documento DB SE-AE Acciones en la edificación (CTE):

Coeficiente Cp_1
Tabla D3. Parametros verticales Cp del CTE
Coeficiente Cp_2
Tabla D3. Parametros verticales Cp del CTE. Valores

Para una superficie mayor de 10m², como es nuestro caso, los coeficientes de presión exterior ( C_e ) máximos para nuestra unidad de ingeniería son 0.8 en los casos de presión y -1.2 para los casos de succión.

Ya que el coeficiente de succión es mayor que el de presión, y puesto que determinadas uniones, como tornillería y pernos de anclaje se calculan a tracciones que aparecen debidas a vientos de succión, calcularemos nuestra unidad de ingeniería en estos casos. Si todos los componentes soportan dichas cargas de succión, podremos asegurar que también lo harán en los casos donde el viento actúa en presión.

También, debemos mayorar esta carga con los coeficientes de seguridad que dicta el CTE en su documento DB SE Seguridad Estructural, en la Tabla 4.1 Coeficientes parciales de seguridad ( \gamma ) para las acciones, donde este coeficiente es de 1.5 para acciones variables desfavorables en situaciones persistentes o transitorias.

Con todas estas consideraciones nuestra carga de viento de cálculo será:

P_v = \gamma  \Large \frac{1}{2}\normalsize  \rho  v_b^2  C_e(z)  C_p

P_v = 1.5  ·  \Large \frac{1}{2}\normalsize  · 1.25  ·  26^2  ·  2.2  ·  (-1.2) = -1673 N/mm^2

Resultados

Observando los resultados, existen fenómenos de flexión muy acusados en los paneles fotovoltaicos hechos de vidrio templado. Las imágenes están amplificadas en deformación para ver mejor estos efectos. Aunque existe esta flexión el panel, las tensiones en el material se encuentran por debajo de su tensión admisible en torno a 50Mpa.

Otro efecto importante es que, al estar las sujeciones de los paneles en el lado corto, dos por lado, la fuerza se transmite directamente a través de estos anclajes dispuestos al principio y al final de las guías de aluminio, por lo que las guías no transmiten la carga hacia la pared del edificio a través de los anclajes en L intermedios. Se observa que solo los anclajes en L de los extremos transmiten carga y se encuentran tensionados más allá de su límite de fluencia como puede verse en el color blanco de las imágenes, color elegido para identificar rápidamente esta cuestión. En las zonas de anclaje a la pared junto a los agujeros rasgados se observan zonas blancas donde se rebasa el límite de fluencia del material, corriendo el riesgo de entrar en el régimen plástico y doblarse, o partirse por la creación de grietas concentradas, en el peor de los casos.

Las guías de aluminio, se cargan al principio y al final de su longitud como ya hemos mencionado pero el material no llega a su límite de fluencia por lo que el componente soporta la carga sin problemas.

La mayor preocupación son las sujeciones de aluminio con un número insuficiente para transmitir esta carga de flexión desde el panel fotovoltaico hacia las guías. Podemos ver cómo, con color blanco, se rebasa en casi toda la totalidad su límite de fluencia. Este componente representa una admisibilidad a la hora del cumplimiento del Código Técnico de la Edificación (CTE).

Conclusiones

La configuración elegida de paneles de vidrio verticales junto con guías verticales hace que todo el conjunto no se comporte de acuerdo al Código Técnico de la Edificación (CTE).

Normalmente este tipo de paneles de vidrio se colocan en horizontal con guías verticales, esto hace que las sujeciones del panel se coloquen en su lado largo, pudiéndose aumentar su número sobre este lado largo, de manera que se reduce la flexión sobre ellos, ya que la luz vertical se reduce de 1800mm a 600mm, y al aumentar su número cada una de ellas se llevaría menos carga a la hora de transmitir hacia las guías.

De esta forma, la carga se repartiría de forma más homogénea sobre todo el conjunto, reduciendo también la carga sobre los anclajes en L, haciendo que cada uno de ellos tomara una carga parecida al contiguo. En nuestro caso solo se cargan los anclajes en L de los extremos, rebasándose, por tanto, su límite de fluencia.

De acuerdo con estas afirmaciones, podemos concluir que el sistema no cumple con los requerimientos definidos en el Código Técnico de la Edificación (CTE), siendo en si mismo un sistema que contiene riesgos para su propia integridad, así como para las personas que habitan o circundan el edificio.